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PREFACE

Certain commercial equipment, instruments, and _oftware are identified in this report to specify

adequately the experimental procedure. In no case does such identification imply recommendation
or endorsement by the National Telecommunieatior_s and Information Administration, nor doe_ it

imply that the material or equipment identified ig necessarily the begt available for the purpoae.
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IMPULSE RESPONSE MEASUREMENTS OVER SPACE-EARTH PATHS

USING THE GPS COARSE/ACQUISITION CODES

John J. Lemmon and Peter B. Papazian t

The impulse responses of radio transmission channels over space-earth paths

were measured using the coarse/acquisition code signals from the Global Positioning

System of satellites. The data acquisition system and signal processing techniques

used to develop the impulse responses are described. Exampl_'.s of impulse response
measurements are presented. The results indicate that this measurement approach

enables detection of multipath signals that are 20 dB or more below the power of the

direct arrival. Channel characteristics that could be investigated with additional

measurements and analyses are discussed.

Key words: impulse response function; Global Positioning System (GPS); radio transmission
channel; pseudorandom noise (PN) codes

1. INTRODUCTION

This report discusses measurements of the impulse response of radio transmission channels over

space-earth paths. The measurements were performed using signals from the Global Positioning

System (GPS) of satellites. The possibility of Using GPS signals to perform such measurements was
initially considered in 1985, when the Institute for Telecommunication Sciences (iTS) was asked to

perform a feasibility study in support of the NASA Propagation Program. The study concluded that

the structure of the GPS signals, con._isting of L-band carriers that are biphase m0d_alated with
pseudorandom noise (PN) codes, would enable impulse response measurements to be made by

correlating a received signal with a locally generated replica of the transmitted signal [1]. Analyses
of the signal-to-noise (S/N) ratio indicated that adequate S/N ratios could be achieved to characterize

the multipath, and it was recommended that a measurement campaign be conducted.

Two different kinds of PN codes are used in the GPS signals: the coarse/acquisition (C/A) codes and

:he precision (P) codes. The C/A codes are Gold codes of length 1023 with a chipping rate of 1.023
'vlHz; thus, each code word has a duration of exactly 1 ms. The P codes are extremely long codes
"approximately 37 weeks) that are reset once per week and have a chipping rate of 10.23 MHz. The

'esolution (in time delay) of the measured impulse response is approximately one code bit duration,

csulting in measurement resolutions of approximately 100 ns and 1/.ts for the P ¢ode.s and the C/A

:odes, respectively.

1The authors are with the Institute fot Telecommunication Sciences, National

'elecommunications and information Administration, U.S. Department of Commerce, Boulder, CO
_303-3328.



A proposal was made to perform impulse response measurements using the P codes rather than the
C/A codes to obtain greater measurement resolution. Accordingly, upon receipt of NASA funding,
ITS attempted to contract the development of an appropriately modified P-code receiver, as
described in [2]. The proposed system was a dual-channel P-code receiver, in which the first channel
would acquire and lock on to the P code. The current P-code epoch time and Doppler shift would

be passed on to the second channel, in which the received signal would be correlated with a delayed,

locally generated P code, enabling the development of the channel impulse response as a function

of relative time delay. Unfortunately, insufficient funds precluded the development of th,, system,

and this app:oaeh was abandoned.

An alternate approach was then proposed [3], whereby a "codeless" P-code receiver would be
developed at the University of Colorado, Boulder, CO. Using a codeless approach, a single-channel
receiver would be used to perform a correlation between signals received by two different antennas:

a high-gain reference antenna that would not receive multipath signals and a low-gain "antenna under
test" that would receive multipath signals, if any were present. Thus, the PN code received by lhe

reference antenna world be used in place of a locally generated code in the correlation processing.

An advantage of the codeless approach is that time delay and Doppler effects _n the signals received

by the two antennas are identical, obviating a need to know the current P-code epoch and Doppler
shift; a disadvantage is the need for a high-gain antenna with the capability to track GPS satellites.

The complexity of the codeless approach and funding difficulties impeded the system development,

and this approach, like the dual-channel approach discussed above, was abandoned. As an alternative

to these rather complex P-code approaches, ITS investigated the feasibility of performing multipath

measurements using the C/A codes. The idea was to use existing hardware to record GPS signals and

perform the correlation processing in software. Because the C/A codes are known codes of l-ms
duration, they can be generated and correlated with received signals in software, so that a high-gain
reference antenna and most of the hardware required in a modified GPS P-code receiver are no

longer necessary. This approach therefore tesu._ts in a vast simplification in hardware.

The disadvantage of using the C/A codes is the decreased resolution in time delay relative to the P

codes. A resolution of 1/zs corresponds to a path difference of approximately 300 m; multipath may

be present in some environments in which the path differences between the multipath and direct
arrivals are much less than 300 m. On the other hand, impulse response data developed with the C/A

codes can adequately characterize transmission channelS whose bandwidths do not exceed those of
tile C/A-code signals (approximately 2 MHz). Thus, this data would be relevant to numerous

applications of satellite communications and navigation.

Uncertainties in S/N ratios and the noise figures of the receiver and recording systems, as well as

variables in the processing, made it difficult to assess the viability of this approach a priori. For

example, the processing gain is a function of the integration time in the correlation processing; the
integration time is in turn limited by the amount of memory in the recording system and the time
scale over which the transmission chanfiel is reasonably stationary. The objective of this work was
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to investigate whether this approach can generate useful results and to determine the values of S/N

that can be achieved using various processing techniques.

Section 2 describes the hardware that was used to collect the raw data. The data processing that was

performed in software is described in Section 3. In Section 4, example impulse responses developed
with this method, are presemed and discussed. Additional processing that could be performed and

improvements to the measurement system that could be made are described in Section 5. Concluding
remarks and recommendations for additional mea._urements and processing are made in Section 6.

2. DATA ACQUISITION SYSTEM

Figure 1 shows a block diagram of the data acquisition system. The GPS signals have fight-hand
circular polarization at an L-band frequency of 1575.42 MHz in the absence of Doppler effects

(spacecraft motion can generate several kHz of Doppler shift). The signals are received by a right-

hand circular MicroPulse GPS antenna mounted on the roof of the Boulder Laboratories, Boulder,

CO. The antenna is low-gain (between +4.5 dBiC and -4.5 dBiC, depending on elevation angle) and

• therefore does not discriminate severely against multipath. The RF signals received by the antenna

are preamplified and passed through 100 feet of RG 58 cable from the roof to the laboratory, where
they are further amplified and dow,aconverted to IF by an HP 8563A spectrum analyzer.

The second IF from the analyzer is tuned to 301.027 MHz and is mixed with the 300-MHz

calibration signal after it is padded for sigt al conditioning, amplified, and low-pass filtered for

harmonic suppression. The resulting signal spectrum is centered at 1.027 MHz (in the absence of

Doppler effects). This frequency was chosen because the bandwidth (defined as the width of the

central spectral lobe) of the C/A-code signals is twice the chipping rate of i.023 MHz. Thus, the

signal spectrum has been translated to as low a frequency as possible (to minimize the Nyquist
requirement) without folding from negative frequencies, after allowing for as much as 4 kHz of

Doppler shift. The signal is low-pass filtered for harmonic ._uppression and anti-aliasing, amplified,
and sampled by a Lecroy 9450A digital oscilloscope. The scope is docked and triggered by an HP
8640B signal generator.

Each sample is an eight-bit integer, and the memory in the scope allows a data file comprising
50,000 samples to be collected. The sample rate is 8.192 MHz, and was determined as follows. The

highest frequency in the signal spectrum (allowing for 4 kHz of Doppler shift) is 2.054 MHz. The

Nyquist rate for the channel is therefore 4.108 MHz. The digital signal processing (discussed in
Section 3 below) uses Fast Fourier Transform (FFT) algorithms, which requite that the number of

Samples in each record be equal to a power of two. Each record correspondS to a single C/A-code

word, which has a duration of 1 ms. Thus, the smallest power of two, which when divided by 1 ms
is greater than 4.108 MHz, is 8192. This corresponds to a sample rate of 8.192 MHz. The IF and

sample rate are precisely maintained by phase locking the spectrum analyzer and signal generator

to a stable 10 MHz Rubidium frequency reference. The spectrum analyzer and scope are Controlled
by a personal computer, which is used to store and process the data.
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3. SIGNAL PROCESSING

The complex, equivalent low-pass impulse response of the transmission channel was developed

using the well-known technique of correlating the received signal with a locally generated replica
of the transmitted Signal. Tile correlation processing was done in the frequency domain; that is, rather
than computing the cross-correlation function of the transmitted and received signals, the cross-
spectral density (.product of the Fourier transforms) of the signals was computed, and the result was
inverse Fourier transformed back into the time domain.

To make this precise, let f(t) denote the received signal at the center frequency (to_F+Om), where On:
corresponds to the 1.027-MHz IF and Oos is the Doppler shift. The received signal is to be correlated

with a replica of the transmitted sigmfl pn(t), Which is a pseudonoise Gold code with a binary value
of ±1. Before computing the cros';-correlation, the received and transmitted signals must be

converted to the same center frequency, or the relative (time-dependent) phase between the signals
will cause the cross-con'elation to vanish. (Equivalently, in the frequency domain, the spectra of the

signals must be centered at the same frequency or the lack of spectral overlap will cause the product

of the spectra to vanish.) Because pn(t) is a baseband signal (zero center frequency), it should be
correlated with the quantity

which is the received signal at baso0and. The impulse response was computed as the inverse discrete

Fourier transform of the cross-spectral density of the transmitted and received signals at baseband.
Thus, in terms of fit) and pn(0 , the impulse response at time to is

r,R_ J to ,sto

where '¢ denotes time delay, Rs is the sample rate (8.192 MHz), and To i_ the period of a code word
(1 ms). The transforms.are computed using FFT algorithms with time blocks equal to T 0.

The value of toDScould, in principle, have been det,,rmined from the ephemeral data of the various
satellites. However, to eliminate errors due to uncertainties in the ephemerideS, COoswas determined

by computing the impulse response for all values of tom between ÷4 kHz and -4 kHz in steps of 15
Hz and using the value of toos for which the peak of the power delay profile (absolute square of the
complex itnpulse response) is a maximum.



4. EXAMPLES OF IMPULSE RESPONSE MEASUREMENTS

The equipment described in Section 2 was used to collect data at approximately 10:00 a.m. local
time (17:00 UTC) on March 24, 1994. Two data files of 50,000 samples each were recorded at a

sample rate of 8.192 MHz, The first data file was recorded with an IF of 1.027 MHz, as described
in Section 2. The second data file was recorded with an IF of 1.5 MHz to investigate the effect (if

any) of the IF on the impulse response measurement (the Nyquist requirement for the 1.5 MHz IF

is well within the 8.3.92 MHz sample rate).

The GPS satellite schedule for the date and location that the data were collected was generated u-_ing

public domain software (the InstantTrack program, written by Franklin Antonio), and is shown in

Figure 2. Local tim¢. is indicated across the top of the diagram, and satellite numbers are listed in the
vertical column at the left. The schedule indicates that as many as nine satellites may have been
inview when the data were collected.

Day: 03124194

S_a_ion: BOULDER LABS

........ 0 1 2 3 4

BI-09

BI-10

BI-11

BII-I

BII-2

BII-3

BI_-4

BII-5

BII-6

BIT-7

BII-S

BII-9

Hour - MST

5 6 7 8 9 I0 II 12 13 14 15 16 17 18 19 20 21 22 23

...... ************* ..... . ....................... ***************** ........

,_********* ................. **4**** .... _ ..................... ***********

................ ******************** ............. ********** .............

................................... ************************ .............

e* ........... ************* ............... - .... - ......... ****e***********

BIIA-10******************* ................................................ *****

BIIA-II .................................................. **********************

BIIA-12 ........... ********************* ............................. ****** .....

BIIA-13-**************** .......... **************** .............................

BIIA.14._,******** .............................. ************** ........... *******

BIIA-15 .............................. *********************** ...................

BiIA-16 .... *********************** .............................................

BIIA-17 ................... ********************** .................. - ............

B_IA-18*_***** ............. ******************* ............................. ****

BIIA-19 ..... ************* ........... ****************** .........................

BIIA-20 ........................................ *********************** ..........

PTIA-21--*************** .............................. ***************** .........

BIIA-22 ............. ********* ............................. ********************-

BI_A-23 ......................... ****** ................ ********************* ....

Figure 2. G.PS satellite schedule for Bouider, CO on March 24, 1994. The astcrisk_ correspond
to times when the Satellites were above 0 ° elevation angle.
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Thedata.wereprocessedusingthetechniquediscussedin Section3.TheC/Acodesfor thenine
satellitesweregeneratedinaccordancewith [4].Peak._in thecrosscorrelationfunctionsstandout
clearlyabovethenoisefloor in fiveoftheninecases.Thefailuretodetectpeaksin theotherfour
caseswaspresumablycausedbyobstructionsduetolowelevationangles.Thiswascorroboratedby
generatingtheapproximateazimuthandelevationar_gl_sfor theninesatellites,andfor thetime,
date,andlocationthatthedatawerecollected,usingtheaforementionedpublicdomainsoftware.
TheresultsareshowninTable1. Correlation peaks were detected for those satellites at elevation

angles greater than or equal to 20 °, aud were not detected for those satellites at elevation angles less

than or equal to 15".

Table 1. GPS Satellite Positions as Seen from Boulder, CO at 17:00 UTC on March 24, 1994

Satellite

BI-11

Azimuth Elevation

-- t ,

Corr_aation Peak

Detected?

45* o No

BiI-1 198" 40 ° Yes

BIi-4 263* 20 ° Yes

BII-6 310 ° 45 ° Yes

15 °

o

127 °

260 °

No

No

BIIA-13

BIIAol5

BIIA-17 342 ° 79 ° Yes

BIIA-18 71 ° 61" Yes

2 ° N9 ........BIiA-19 158 °
i" ,4 ,

At the 8.192 MHz sample rate, 8192 samples were contained in each time block corresponding to

a C/A code word (1 ms). Thus, the 50,000-sample data files enabled six consecutive impulse

responae functions to be developed for each visible satellite. To improve the S/N ratios of the

impulse responses, the six consecutive impulse responses for each satellite were combined as
follows. First, the impulse responses were shifted in time delay (by no more than +_.1time sample)

to align the peaks of the power delay profiles in relative time de!ay. Then the impulse responses were
multiplied by phase factors defined so that each of the resulting impulse responses had zero degrees

of phase at the peak of the power delay profile to align the phases of the impulse responses. The

impulse responses were then added coherently.
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i_igurc 3. Correlation peak power (in arbitrary units) versus Dopp.ler shift- _.

Typical results are shown in Figures 3, 4, and 5, using an IF of 1.5 MHz and the code fo: the BIiA-18

satellite. Figure 3 is a plot of the peak of the power delay profile (corresponding to th_ first code

word in the data file) versus Doppler shift in H_.. A sequence of six consecutive impulse responses

was developed, using the value of Doppler shift for which the correlation peak is a maximum.

The inphase (i) and quadrature (Q) components of the impulse response corresponding to the first
code word are plotted in Figure 4(a) and 4(b), respectiVely. The units on the vertical scales are

arbitrary, because the received signal level of the data acquisition system was not calibrated
(although this could be done). The units on the horizontal scales are sample number; for a sample
rate of 8.192 MHz the sample time is 0.122 pS and the entire horizontal scale (8192 samples)

corresponds to I ms of relative time delay.
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Figure 4. Plots of' the (a) inphase and (b) quadrature components of an impulse response function,

(c) the corresponding power delay profile, and (d) the power delay profile of the sum of
six consecutive impulse responses (in arbitrary units).

The power delay profile (I_+@) corresponding to Figures 4(a) and 4(b) is plotted in Figure 4(c).

Figure 4(d) shows the power delay profile obtaiiaed by coherently combining the six consecutive

impulse respoCJses. A plot of this latter power delay profile (in dB units of relative power) is shown

on magnified scales in Figure 5. The improvement in s/N ratio aehiow'd by con, bining the impulse

responses is clearly evident.
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Figure 5. Plot of the impulse response function in Figure 4(d) on magnified scales.

None of the impulse responses de_ -loped l_rom the data files shows any indication of multipath. This
is not surprising, given the location of the receive antenna on a rooftop where mUltipath reflections
from nearby terrain and buildirtgs are unlikely to be visible. However, the results do indicate that this

technique yields S/N ratios that are sufficient to reveal multipatll signals that are as much a_ 20 dB
below the power of the direct arrival.

The S/N ratios of all the impulse responses developed from the data files are summarized in Table

2. Although noise power generally ;efers to an average power (N,0, it is also of interest to know the

peak noise power (Np) in each impulse response in order to estimate the power level below which
multipath signal_ cannot be distinguished from spurious noise peaks. Therefore, the ratios of the

signal power to both the average noise power (S/N_0 and the peak noise power (S/_) wer_
computed using the following technique.

10



Themeasuredvalueoftheimpulseresponseatthecorrelationpeakis thesumof thedesiredsignal
andthenoise.Thus,if thenoiseis treatedasazero-meanrandomprocessthatisuncorrelatedwith
thesignal,

(lz+.o2)0 = S÷N^, (3)

where (i2÷Q2)odenotes the eXpected value of the power delay profile at the correlation peak, and S

and N Adenote the expected values of the signal power and noise power, respectively. At values of

time delay far away from the correlation peak, where no signal is expected, the measured value of

:he impulse response is pure noise. Thus,

<t2+Q2>, -- (4)

_¢here (I2+02)A denotes the average value of the power delay profile at values of time delay far from

:he correlation peak. Only samples of the power delay profile more than 50 samples (approximately

5 ps) away from the correlation peak were used to compute the average noise power. Dividing (3)

_y (4), the signal-to-noise ratio (S/NA) is

S (12÷Q2)o

N a {I2*Q2)A
- 1. (5)

;imilarly, for the peak noise power,

q:.Q2) e = Ne, (6)

vhere (I2+Q2)_ denotes the peak value of the power delay profile mote than 50 samples away from

he correlation peak and Np is the peak noise power. Dividing (3) by (6) gives

S (i2÷Q2)tl NA

Ne (12+Q2)p Ne
(7)

;ince N A< Np, replacing NA/Np by unity in (7) results in the inequality

, 1, (8)
N. (12+02__

vhich can be used to obtain a lower bound for S/N r.
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Strictlyspeaking,<12+02>is an expected value and can only be obtained from an ensemble of impUlSe

response records. However_ this was precluded by the limited size of the database. Therefore, (5) and
(8) were used to estimate the S/N ratios for each of the individual impulse response records, and the
resultg Were averaged for the six consecutive records corresponding to each satellite. In addition, (5)

and (8) were used to estimate the S/N ratios for the impulse reSponSes obtained by coherently

'combining the Six consecutive records for each satellite.

Table 2 lists the average values of S/N^ and S/Np for two IFs (1.027 MHz and i.5 MHz) and for two
Doppler resolutions (15 Hz and 250 PI_), resulting in four values for each of the average S/N ratios
for each satellite. The S/N ratios for the combined records were only computed for the 1.5-MHz IF

and a Doppler resolution of 15 I4_z.A_ can be Seen fro.. the table, using different IFs and/or different

Dopplef resolutions has little effect on the S/N ratios. For the two different IFs, the S/N ratios can

differ by as much as a dB or more, but typically by a few tenths of a dB. The effect of changing the
Doppler resolution from 15 Hz to 250 Hz is even less significant, typically on the order of a tenth

of a dB. The S/N ratios show a slight tendency to increase for higher elevation angles and lower
Doppler shifts.

The increases in the S/N ratios as a result of coherently combining the individual impulse responses

are approximately consistent with expectations. The phases of the individual impulse responses have
been adjusted so that they all have zero phase at the correlation peak. One therefore expects the peak

of the coherent sum of N impulse responses to scale like N, and the power to scale like N 2. On the

other hand, if one assumes the noise is a Gaussian random process, the sum of N independent,
: identically distributed noise processes is a Gaussian process whose variance (which equals the

expected value of the power) scales like N. Therefore, one expects the S/N ratios to scale like N. For
N -- 6, this corresponds to an increase of 7.8 dB. The average increases in S/N A and S/Np for the five

sets of impulse responses are 6.3 dB and 8.5 dB, respectively.

Two possible causes of concern in using the C/A codes for impulse response measurements are the
autocorrelation sidelobes and the cross-correlation between codes of different satelliteS. However,

Gold [5] has shown that relative to the central autocorrelation peak, the magnitudes of the sidelobes

are bounded by the quantity

n,.2_

:_T_+ t (9)
p '

where n is the number of shift register stages used to generate the codes and P is the length of the
code. For the C/A codes, n -- 10 and P - 1023, so that the sidelobe levels are at leagt 24 dB down

fi'om the central peak. For Gold codes Of length 1023, it can be shown [6] that the peak cross-

correlation is 23.8 dB down from the autocorrelation peak. Therefore, the autocorrelation sidelobes
and cross-correlation peaks of the C/A e0des are not significant for the measurements di._cussed
herein.
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Table2.Signal-to-noiseRatiosof Impulse Response Measurements

Satellite

BII-1

BII-1

BII-1

BII-I

BII-4

BII-4

BIi-4

BII-4

BII-6

BII-6

BII-6

BH-6

BIIA-17

BIIA-17

BIIA-17

BIIA-17

BIIA-18

Average

S/Nt, (dB)

2.1

Average Combined

SIN A (dB) S/N^ (dB)
_n rr

13,3
re

12.5 19.2

1.3.5

11.7

11.3

12.4 18.6

11.3

12.5

15.0

15.5 21.4

14.9

15.3

15.6

15.8 22.1

15.3

15.6

14.6

14.7 21.0

14,6

14.8

0.0

2.4
-e.....-

-1.6

-1.8

0.0

-2.3

0.0

3.9

4.7

3.8

4.5

4.9

4.9

4.3

4.5

2.8

1 .... it , 'f ................ • ..... , ..... _,
m

Doppler
Resolution (Hz)

Combln,.d IF

S/Np (dB) (MHz)

1.027

10.2 1.5

1.027

1.5

1.027

9.7 1.5

1.027
,T

1.5

1.027

11.4 1.5

1.027

1.5

1.027

11.8 1.5

1.027

1.5

1.027

12.1 1.5

1 .O27

1.5

15

250

250

15

15

250

250

15

15

250

250

15

15

_250

250

15

Doppler
Shift (HZ)

31!5

3155

3000

3250

-2800

-2770

-2750

-2750

-2460

-2400

-25oo

-2500

-650

-625

-750

-500

1510

BIIA-18 3.2 15 1540

BIiA-18 2.8 250 1500

250BIIA-18 3.3 1500

5. RECOMMENDATIONS FOR FUTURE WORK

The measurement results discussed above indicate that S/N ratios can be achieved that are adequate
to detect multipath signals many dB below the power of the direct arrival. The absence of multipath

in the data analyzed thus far can be attributed to the location of the receive antenna at a site where

multipath is unlikely to be present. However, multipath may be present in some environments, and
it is important for bOth navigation and communications applications that such multipath be measured

and characterized. Aside from multipath, impulse response measurements can provide other

important information about transmission channels, including received signal levels and channel

13



dynamics.It is therefore recommended that the following research be undertaken: incorporation of
additional memory into the measurement system, additional measurements, and additional
proceSSing of the measured data.

Data files comprising 50,000 samples (at the 8.192 MHz sample rate) allow only six consecutive
impulse responses to be developed. Some applications, including the computation of the channel

scattering function (discussed below), require measurements of the impulse response over time

histories longer than 6 ms. Additional memory could be added to the measurement System with little

effort and expense. For example, 8.4 million samples would enable 1024 consecutive impulse

responses to be d_veloped.

Installation of the measurement system in a van would enable data to be coIlected in a variety of

environments. This is important for two reasons. First, data collected in some environments (for

example, urban, suburban, and mountainous terrain) may reveal the presence of significant
mulitpath. Distributions of delay spread in various environments could be developed and the

relationship between delay spread and elevation angle investigated. Second, data could be collected
while the van is moving, so that the channel dynamics could be characterized. This is important for

mobile radio applications as well as determining the position of moving vehicles.

The scattering function is a useful quantity for characterizing channel dynamics. It enables the

display of the time-varying impulse response as a function of both time delay and Doppler shift. If
one denotes time by t and time delay by % the scattering function is defined as the Fourier transform

(with respect to t) of the autocorrelation function of the impulse response for each value of X, and
is therefore the power spectrum of the impulse response for each value of _. As in the computation

of the impulse response, it is convenient to compute the correlation integral in the frequency domain.
Thus, the scattering function can be defined as the square of the Fourier transform (with respect to

t) of the impulse response:

f r h(t,x)e'i'_dt }', (io)

where h(t,z) is the impulse response and T is the length of time over which measurements of the

impulse response are performed. The Doppler frequency (teD), not to be confused with the Doppler

shift (tees) due to the motion of the satellite, is the frequency variable in the power spectrum of the
impulse response.

In a mobile channel, the dirOct signal and the multipath signals are generally associated with different
Doppler shifts, because the different signal components arrive at the receiver via different

propagation paths. At the L-band frequency of the GPS signals, vehicular motion can generate

Doppler spreads as large as several hundred Hz in worst case scenarios. For such channels, the
scattering function should be developed over a Doppler bandwidth on the order of a kHz. If the

integral in (10) is evaluated as a discrete Fourier transform, the Doppler bandwidth is 1/T and th_
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Doppler frequency resolution is the rate at which the impulse responses are measured in time. Thus,

the measurement of 1024 consecutive impulse responses at the rate of one impulse response per ms
would enable the scattering function to be developed over a Doppler bandwidth of 1 kHz with a

resolution of approximately 1 Hz. Doppler power profiles and distributions of Doppler spread, like

the corresponding quantities in the time domain (power delay profiles and distributions of delay
spread), are channel characteristics that are important to system designers.

Aside from characterizing multipath and channel dynamics, impulse response measurements using

GPS signals) coupled with knowledge of the elevation angles of the satellites, can provide useful
information about received signal levels (RSI..s) and satellite availability. The RSL for a particular

satellite is proportional to the magnitude of the correlation peak in the impulse response. Such

measurements could therefore provide information about the relationship between RSL and elevation

angle, and could be used to develop distributions of fading rates and fade durations.

The availability of a particular satellite is determined by the presence or absence of a correlation peak

corresponding to that satellite. Using impulse response measurements, the relationship between

availability and elevation angle in various environments can be investigated. This is especially
important, for satellite communication systems that use low earth orbit satellites (LEOS), because

the satellites that are available to a particular user change on a relatively short-term basis.

6. CONCLUSIONS

The results presented in this report clearly establish the feasibility of performing impulse response

measurements over space-earth paths using the GPS C/A codes. The 1.023-MHz chipping rate of

the C/A codes provides a time-delay resolution that is probably not adequate to resolve all the
multipath that may be present in some channels (,path differences much less than 300 m). However,
this measurement resolution should be adequate to characterize the channel t_orapplications that use

a bandwidth on the order of or less that_that of the measurements (2 MHz). Furthermore, the results

show that the S/N ratio_ that can be attained are adequate to detect multipath components that are
20 dB or mote below the power of thedir.ect arrival.

An advantage of using GPS satellites to perform these measurements is that the impulse responses

from several satellites whose positions are continually varying can be measured simultaneously.
Thus, distributions of channel characteristics (including delay and Doppler spreads, RSLs, and

satellite availability) as well as the relationships between these characteristics and satellite position

(azimuth and elevation angle) can be investigated in a variety of environments. The development of
such a database would provide a valuable resource for system designers in both the communications

and navigation communities.
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